Analysis of complex visual scenes.

Where? What?

Detection and classification.

• Statistical models:

Models based on hierarchies of *binary* features. Keep it simple!

Hierarchies of features/objects:

Primitive local features

Complex local features

Generic object parts

• Invariance: Clutter.

How do we generalize to other fonts??

• Invariance: Geometric variation - linear, nonlinear.

• Architectures:

Classification trees - 99.3% classification rate on handwritten digits. But... very sensitive to clutter.

Simple neural networks - perceptrons.

• Learning/training:

Small data sets!

• Efficient computation:

Coarse to fine!

How do we get rid of the false positive??

Speech Recognition: auditory scenes

The same issues, similar techniques?

Classification:

Detection:

...Departure from classical Hidden Markov Models.

Biological Connections

- Modeling: Parallel architectures for learning, detecting and classifying.
- Psychophysical experimentation: test hypotheses generated by the models.

Find the \mathcal{E}

• Possibility of electro-physiological experimentation.